
Available online at www.sciencedirect.com
International Journal of Multiphase Flow 34 (2008) 206–225

www.elsevier.com/locate/ijmulflow
Numerical simulation of the onset of slug initiation in
laminar horizontal channel flow

P. Valluri, P.D.M. Spelt *, C.J. Lawrence, G.F. Hewitt

Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Received 30 September 2006; received in revised form 28 June 2007
Abstract

Results are presented for the initiation of slug-type structures from stratified 2D, two-layer pressure-driven channel
flow. Good agreement is obtained with an Orr–Sommerfeld-type stability analysis for the growth rate and wave speed
of very small disturbances. The numerical results elucidate the non-linear evolution of the interface shape once small dis-
turbances have grown substantially. It is shown that relatively short waves (which are the most unstable according to linear
theory) saturate when the length of the periodic domain is equally short. In longer domains, coalescence of short waves of
small-amplitude is shown to lead to large-amplitude long waves, which subsequently exhibit a tendency towards slug for-
mation. The non-uniform distribution of the interfacial shear stress is shown to be a significant mechanism for wave
growth in the non-linear regime.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The transition from stratified to slug flow is an important consideration in the design and operation of pro-
cess equipment, especially in the transport of mixtures of gas with associated liquids (oil, condensate and/or
water). Slug flow is associated with oscillations in pressure and flow rate and large surges of liquid, which can
cause significant problems if the receiving facilities are not adequately sized. The pace of research is acceler-
ating with the reliance on very long (hundreds of km) pipelines for multiphase transport from offshore fields in
increasingly harsh and deepwater environments. Much research has naturally been conducted to determine the
conditions under which the transition from stratified to slug flow occurs. The results are usually presented in
the form of flow regime maps (e.g., Hewitt, 1982). The use of such flow maps is restricted by the fact that many
parameters govern the transition. A dominant requirement for slugging is a minimum liquid level in the pipe-
line, which manifests itself in commonly used flow maps as a minimum superficial liquid velocity. Other
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important factors include the gas density, the liquid viscosity and the pipeline inclination (which change the
liquid height required for transition, see Andritsos et al., 1989).

Several visual observations have provided some understanding of the physical mechanisms that lead to the
onset of slugging (Andritsos et al., 1989; Fan et al., 1993). The first disturbances to appear on the interface are
usually very small sinusoidal waves, which suddenly give rise to a large-amplitude wave that bridges the pipe
and forms a slug. Sometimes a few large-amplitude waves coalesce with one another resulting in a longer wave
before a slug is formed. Kordyban (1985), Davies (1992), Hale (2000) and Ujang et al. (2006), amongst others,
presented images of the development of large-amplitude waves into slugs. The photographs show the devel-
opment of small-amplitude waves on the crest of the large wave, just before the wave bridges the pipe.

Early theoretical work assumed a continuous growth of a small-amplitude long wave into a slug, driven by
a Kelvin–Helmholtz instability (e.g., Taitel and Dukler, 1976). Wall shear and interfacial stress were
accounted for by Lin and Hanratty (1986), but the long-wave assumption was retained, facilitating an integral
momentum balance. Although the criteria for linear instability obtained in these early theoretical studies show
quite good agreement with experimental conditions at the onset of slug formation, the underlying assumptions
have been increasingly undermined by subsequent work and now seem unlikely to be justifiable. As early as
1989, Andritsos et al. reported observations invalidating the assumption that a single long wave develops con-
tinuously into a slug (made by Lin and Hanratty (1986)).

Much progress has been achieved in subsequent work, wherein the full Orr–Sommerfeld problem has been
solved. Yiantsios and Higgins (1988) (amongst related work by others) presented extensive results from an
Orr–Sommerfeld-type analysis for laminar pressure-driven two-layer channel flow, in the form of neutral sta-
bility curves. Results particularly relevant to the present work are presented in Section 2 below. A base-state
velocity profile that corresponds to a turbulent flow has been accounted for in the analysis by Miesen and
Boersma (1995) for sheared thin layers, and by Kuru et al. (1995) for conditions that are more representative
of the onset of slug flow. It should be noted that these groups did not account for the modification of the tur-
bulence structure by the waves, as considered by Belcher and Hunt (1993, 1998) for gravity waves. In any
event, based on their results for the full linear stability problem, Kuru et al. (1995) criticised the long-wave
assumption and the earlier inviscid analyses for slug initiation. Their results show poor agreement with results
from the long-wave linear analysis and the inviscid theory, with the most unstable wavelength usually being of
the order of the pipe diameter.

The previous results from Orr–Sommerfeld stability analyses of laminar two-layer channel flow, as well as
for unbounded two-layer flows (e.g., Hooper and Boyd, 1983; Yecko et al., 2002; Boeck and Zaleski, 2005)
show that the two relevant classes of instability mechanisms are an interfacial mode and shear modes (of
Tollmien-Schlichting type) that occur at sufficiently large Reynolds numbers. Any of these modes can be dom-
inant (with the TS modes evolving primarily in either of the two fluid layers), and may account for the insta-
bility of long (Yih, 1967) as well as short waves (Hinch, 1984; Boomkamp and Miesen, 1996), depending on
flow conditions.

The mechanisms of linear instability in the case of slug initiation can be classified by using an energy bal-
ance based on the solution of the Orr–Sommerfeld problem. Boomkamp and Miesen (1996) performed energy
balance calculations for the flow conditions of numerous previously conducted analyses and experiments.
Although most cases considered are flows past a thin liquid layer, those authors reported that an important
role is played by the interfacial mode caused by viscosity contrast in the waves studied by Andritsos and Hanr-
atty (1987) and Kuru et al. (1995).

These findings are of course at odds with the earlier, inviscid stability analyses for slug initiation (e.g., Taitel
and Dukler, 1976). In fact, Boomkamp and Miesen (1996) argued that the presence of viscosity, however
small, eliminates any evidence of Kelvin–Helmholtz instability, i.e., that any observed instabilities would be
governed by one of the alternative mechanisms mentioned above. The inviscid analysis of Morland and Saff-
man (1993) does recover a Kelvin–Helmholtz instability in the large-shear limit, but it only manifests itself at
small wavelengths, where the inviscid analysis is no longer valid. The direct numerical simulations of the
Navier–Stokes equations by Tauber et al. (2002) show that, under high shear, and upon using the inviscid
solution as the initial condition for the flow field, the growth rates observed at short times are consistent with
the inviscid analysis. But the relevance of Kelvin–Helmholtz analyses remains in dispute, even for mixing lay-
ers (Yecko et al., 2002). In Section 2 of the present work, after summarising the Orr–Sommerfeld analysis and
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energy balance, we extend the range of the results of Boomkamp and Miesen (1996) to more representative
cases of slug initiation, to clarify the mechanism for linear instability.

The subsequent weakly non-linear evolution has been investigated by Boomkamp (1998), who assumed that
overtones are enslaved by the fundamental mode, so that Stuart–Landau theory could be used. He investi-
gated a set of experimental conditions and showed that the bifurcation is supercritical. King and McCready
(2000) included a spectrum of modes and accounted for all quadratic and cubic interactions for a particular set
of flow conditions at which experiments had been conducted for gas–liquid flow. At sufficiently large values of
the liquid Reynolds number, energy is transferred from the linearly dominant modes to the longest wave via
the mean flow mode (i.e., the mode that does not vary in the flow direction), through quadratic interactions.
These theoretical results showed encouraging agreement with experiments. The theory is, however, limited to
modest mode amplitudes.

The main purpose of this paper is to use direct numerical simulations of the onset of slug initiation, in an
effort to provide further insight into slug formation beyond the linear and weakly-non-linear regimes. Previous
work in this area has focused primarily on two-phase mixing layers (e.g., Coward et al., 1997; Tauber et al.,
2002; Boeck et al., 2006) and annular flows (e.g., Li and Renardy, 1999; Fukano and Inatomi, 2003). A com-
mon feature of the simulations of mixing layers is the evolution of waves into fingers that approach a point of
pinch off and drop formation, rather than the formation of a wave of very large-amplitude, as in slug flows.

A further objective of the present work is to examine the interfacial stress distribution during the evolution of
the waves. In the linear wave regime, several workers have related the wave growth to the phase difference
between the wave and the perturbations of the normal and tangential interfacial stress (e.g., Belcher and Hunt,
1998; Benjamin, 1959; Miles, 1967; Davis, 1969; Thorsness et al., 1978). Many previous workers have attempted
non-linear analyses using model wave equations, usually derived using some form of long-wave hypothesis. A
critical feature of such work is the treatment of the interfacial stress. Very often the interfacial stress distribution
is then related to the gas velocity by introducing an interfacial friction factor for which a closure relation is used
(e.g., Taitel and Dukler, 1976; Andritsos and Hanratty, 1987). The fact is that very little is known about the true
form of the stress distribution in the non-linear regime and how it changes during the wave growth. This is clearly
of significant interest, since the waveform could have a strong effect on the stress distribution, providing a sig-
nificant feedback mechanism for wave growth, as is evident from the linear analysis (e.g., Hanratty, 1983).

Some simplifications are made in order to facilitate accurate simulations. Firstly, the Reynolds numbers of
the flows simulated are not large, and the resulting flow is laminar; also, the viscosity and density ratios are
modest. Experimental evidence of slug initiation at values of the Reynolds number (based on the liquid flow)
similar to or even lower than those in the simulations has been presented by Manolis (1995), for air–oil sys-
tems. The Reynolds number of the gas flow is much larger in experimental conditions than attempted here, but
Manolis’s data (as well as those by others, see, e.g., Mata et al., 2002) show no strong effect of the gas flow rate
on the transition to slug flow. The main difference with larger gas flow rates is the absence of gas entrainment
at the slug front (sometimes referred to as an elongated-bubble regime), the occurrence of which is indeed not
the subject of the present paper. A second simplification made here is that the pipe geometry is assumed not to
have a large effect on this process, so that only the two-dimensional problem is studied here. The main issue to
be investigated is the transition from small-amplitude (and short-wavelength) waves to large-amplitude longer
waves, stopping short of actual bridging events. Finally, this study is restricted to temporal instabilities; sim-
ulation of the evolution of convective instabilities would require excessive computational resources.

We use a level-set approach to track the deforming interface, with a projection-method Navier–Stokes solver
[details of the present method can be found in Sussman et al. (1999) and in Spelt (2006)]. Some necessary mod-
ifications of the previous method are discussed in Section 3. An important and difficult issue is the convergence
of numerical simulations of the evolution of waves that are initially of very small amplitude, so results from
several convergence tests are presented. Results for the growth of small waves into large waves and their sub-
sequent evolution, are presented and discussed in Section 4, and the paper is concluded in Section 5.

2. Governing equations and linear theory

We study here the evolution of a small-amplitude wave on the interface between fluids of different density
and viscosity, as sketched in Fig. 1. The flow is driven by a pressure gradient along the length of channel
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studied; the flow is horizontal, so that gravity is downwards. Periodic boundary conditions are used at the inlet
and outlet. First, in this Section, we briefly summarise a linear stability analysis and present some key results.
In this analysis, the growth rate and wave speed are determined for single harmonic modes. Of course this
restriction could overpredict the value of critical parameters required for the onset of instability in practice.
van Noorden et al. (1998) and South and Hooper (1999) have studied two-layer Poiseuille flow under condi-
tions where single waves are linearly stable (following earlier work on the stability of e.g., single-fluid Couette
flow). Their results show that, in cases that are stable according to a normal-mode analysis, the total energy
can grow by a factor of 30 before the disturbance dies out. This is important, because it might be sufficient for
non-linear effects to become significant. Similar analyses for two-fluid mixing layers have been carried out
recently by Yecko and Zaleski (2005), who reported growth by factors of order 103. The present purpose
is, however, to study the flow under conditions wherein waves are unstable. The results of the linear stability
analysis will serve primarily as a benchmark test for the computations reported in subsequent sections. Also,
the stream function perturbations of the most dangerous modes are used in an energy balance, to classify the
physical mechanism that leads to instability in the flows considered in this paper.
2.1. Dimensionless parameters and linear analysis

The two fluids are denoted by j = A, B with densities qj, viscosities lj and interfacial tension c, and flow
through a channel of height H (see Fig. 1). The dimensional unperturbed depth of the lower fluid (B) is ĥ,
and ĝ is the dimensional perturbation of the interface position, so that the dimensional location of the inter-
face is at ŷ ¼ ĥþ ĝ x̂; t̂ð Þ. The subscripts j = A, B are suppressed where they are not needed, and subscripts will
also be used without ambiguity to denote partial differentiation. The length of the domain is considered to be
equal to the wavelength of the imposed wave, k. We introduce dimensionless variables, without caret, as
follows:
x̂ ¼ Hx; ĥ ¼ Hh; ĝ ¼ Hg; û ¼ V u; t̂ ¼ ðH=V Þt; �p ¼ �qAgðy � hÞ þ ðqAV 2Þp̂;
where u and p are the velocity and pressure, respectively. The velocity scale is chosen as V = (U/qA)1/2, where
U is the dimensional value of the imposed pressure gradient, such that in the base state discussed below,
p = �x. The main dimensionless parameters are
Re ¼ qAVH
lA

; m ¼ lB

lA
; n ¼ qB

qA
; Ca ¼ lAV

c
; G ¼ ðqB � qAÞgH 2

lAV
and the dimensionless height of the lower fluid, h. In the base state, the interface is flat (g = 0), the flow is
steady and unidirectional, v = 0, u = U(y), and the pressure is linear, p = �x. The solution is then
U A ¼ �Re
2
½y2 � 1� aðy � 1Þ�; ð1Þ

U B ¼ � Re
2m
ðy2 � ayÞ; ð2Þ
Fig. 1. Geometry and fluid properties.
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where the coefficient a is chosen to give continuity of velocity at the interface:
Fig. 2.
a ¼ h2 þ mð1� h2Þ
hþ mð1� hÞ :
We introduce a perturbation of the form:
g ¼ e~geiðkx�xtÞ; u ¼ UðyÞ þ ewyðyÞeiðkx�xtÞ; v ¼ �eikwðyÞeiðkx�xtÞ; p ¼ �xþ e~pðyÞeiðkx�xtÞ:
Here e is an arbitrary small parameter, ~g the relative amplitude of the perturbation, w the (y-dependence of
the) stream function of the perturbation, ~p the corresponding (y-dependence of the) pressure, k the wavenum-
ber (=2p/k), taken to be real, and x is the frequency, expected to be complex. If the perturbation is unstable,
its temporal growth rate is given by Im(x).

Substitution of these expressions into the equation of motion, and dropping terms that are non-linear in the
perturbed variables, results in an eigenvalue problem for the stream function w(y), with eigenvalue c = x/k,
similar to the Orr–Sommerfeld analysis for single-fluid flows. The eigenmodes w(y) are determined numerically
using a finite-difference approximation of the governing differential equation; this was found to be sufficient
for the flows considered here. As similar analyses have been published before, the reader is referred to Yiants-
ios and Higgins (1988), Kuru et al. (1995) and South and Hooper (1999) for further details. Our results com-
pare very well with those published by South and Hooper (1999). Their analysis is for the particular case of a
two-layer flow with uniform density (n = 1, G = 0) and no surface tension.

The resulting eigenvalue spectrum is shown in Fig. 2 for a typical flow for which direct numerical simula-
tions are presented in the following sections. We have rescaled the results to match those of South and Hooper
(1999); in their notation, Umax = 0.14957. It has been verified that these results converge when the finite-dif-
ference grid spacing is refined.

Typical results for the growth rate as a function of wave length are shown in Fig. 3a (the dimensionless
parameters are as in Fig. 2). It is seen that the most dangerous mode corresponds to a rather short wave length
of about 1.5H, similar to the previous findings of Kuru et al. (1995) for turbulent flow. The growth rate is seen
to be larger at smaller values of h in Fig. 3b. In the simulations presented in the following sections, h is set to
the relatively large value of 0.7, in order to promote slug initiation rather then finger formation. Because of the
computational effort required, the flows studied here are somewhat restricted. In most of the results, the
remaining parameters are Re = 500, G = 180, m = n = 10 and Ca = 10. Further calculations showed no qual-
itatively different results, as discussed at the end of the paper. The flow conditions mentioned here correspond
to Reynolds numbers based on the mean velocity for the upper and lower fluids as follows:
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ReS
A ¼ uavg

A ðH � hÞqA=lA ¼ 325, and ReS
B ¼ uavg

B hqB=lB ¼ 636, where uavg
j is the average base-state velocity for

phase j. The linear analysis predicts a critical value of Res
B ¼ 99� 4 for L = 8.
2.2. Classification

We use the energy balance method of e.g., Hooper and Boyd (1983), Hu and Joseph (1989) and Boomkamp
and Miesen (1996) to classify the linear instabilities studied here. This is necessary, because such a calculation
has not been presented in previous work on the laminar problem (e.g., Yiantsios and Higgins, 1988). In this
approach, the rate of change of the kinetic energy of the disturbance to the base state is obtained from the
momentum equation. Upon integrating over a wave length (k = 2p/k), the result is
XB

j¼A

KINj ¼
XB

j¼A

DISj þ
XB

j¼A

REYj þNOR þ TAN; ðj ¼ A;BÞ: ð3Þ
Here, DISj represents the viscous dissipation of the disturbed flow in each fluid, and is given in terms of the
velocity components (u,v) by



Table 1
Energy distribution for h = 0.7, m = n=10, Re = 500, G = 180 and Ca = 10

k DISA DISB REYA REYB TAN NOR

1.5 �2.2893 · 10�1 �4.8638 · 10�2 �1.3408 · 10�3 5.8863 · 10�3 3.2895 · 10�1 �2.4576 · 10�5

8 �1.3598 · 10�1 �2.5090 · 10�2 7.9891 · 10�4 6.1465 · 10�3 1.7612 · 10�1 �1.0518 · 10�5

9 �1.3232 · 10�1 �2.4311 · 10�2 8.9039 · 10�4 5.9732 · 10�3 1.7024 · 10�1 �9.7226 · 10�6

The wavelength, L = 1.5, corresponds approximately to the most dangerous mode.
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DISj ¼ �
m2

j h

kRenj

Z bj

aj

dy
Z k

0

2
ouj

ox

� �2

þ ouj

oy
þ ovj

ox

� �2

þ 2
ovj

oy

� �2
" #

dx: ð4Þ
REYj represents the energy contribution due to Reynolds stresses,
REYj ¼ �
nj

k

Z bj

aj

dy
Z k

0

ð�ujvjÞ
dU j

dy

� �� �
dx: ð5Þ
In Eqs. (3)–(5), j = A, mA = 1, nA = 1, aA = h and bA = 1 for the upper fluid, and j = B, mB = m, nB = n,
aB = 0 and bB = h for the lower fluid. NOR and TAN represent the work done by the velocity and stress dis-
turbances in the directions normal and tangential to the interface, respectively. NOR is given by,
NOR ¼ 1

k

Z k

0

½vSgxx�y¼h dxþ 1

k

Z k

0

½vF g�y¼h dx: ð6Þ
Here the first and second terms represent the work done against the deformation of the interface due to inter-
facial tension and gravity, respectively. S is an inverse Weber number given by S = 1/(nhCaRe) and F is an
inverse Froude number given by F = Gh/(nRe). The tangential work done against interface deformation,
TAN, is
TAN ¼ 1

k

Z k

0

½uBs
xy
B � uAs

xy
A �y¼h dx; ð7Þ
where the component of the stress tensor is defined as
sxy
j ¼

mj

Re
ouj

oy
þ ovj

ox

� �
: ð8Þ
In Table 1, the values of these terms in the energy balance are shown for several values of k, including the most
prominent mode (k = 1.5). Evidently, the linear instability is driven by TAN. This finding is consistent with
that of Boomkamp and Miesen (1996), who found that this term plays an important role in the energy balance
for the slug initiation studies of Andritsos and Hanratty (1987) and Kuru et al. (1995).

The basic mechanism of initiation for such interfacial modes can generally be attributed to the viscosity or
density contrast (Boomkamp and Miesen, 1996). A viscosity contrast leads to a discontinuity in the gradient of
the base-state velocity profile at the undisturbed interface, which in turn causes a discontinuity in the distur-
bance velocity. This results in a source of kinetic energy of the disturbance. A density contrast gives rise to a
similar source of disturbance energy, this time originating from a discontinuity in tangential stress across the
undisturbed interface, at least for inclined channels. These initiating mechanisms are at the root of several
mechanisms of instability in a variety of flow conditions (e.g., Kelly et al., 1989; Smith, 1990 for shear-driven
falling films).

3. Method for direct numerical simulations

The main objective of this paper is to study the wave evolution beyond the linear regime, using full direct
numerical simulations. The level-set method of Sussman et al. (1999) is used here, with the modifications pre-
sented in our previous work (Spelt, 2006) to eliminate global mass errors and to allow standard routines to be
used in solving the resulting equations. One further modification is needed for the present simulations, namely
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the implementation of periodic boundary conditions. Periodic boundary conditions rule out the standard mul-
tigrid routines that were used in our previous work to solve the Poisson equation for the pressure and the vis-
cous predictor-type equation. Therefore, a block Gauss–Seidel technique that imposes the periodicity
condition exactly is used here (Hirsch, 1988).

In the next section we present results from numerical simulations of the full equations of motion. The equa-
tions of motion were solved for a rectangular domain (see Fig. 1), subject to no-slip conditions at the top and
bottom walls, and periodic conditions at the ends. The pressure drop was fixed during simulations (leading to
a change in superficial velocity during wave growth that will be discussed in Section 4). The height and loca-
tion of the wave crest were determined by linear interpolation. Early simulations were started from the base-
state velocity field, with a small perturbation to the interface height. This resulted in significant oscillations in
the observed growth rate. Therefore, the Orr–Sommerfeld solution for velocity and pressure fields was used as
the initial condition in the simulations reported in the following section, unless indicated otherwise.

A concern specific to the nature of the flows simulated here is the representation of the discontinuity in
physical properties across the interface. The standard procedure adopted in previous work (Sussman et al.,
1999; Spelt, 2005) of smoothing these discontinuities over e.g., 1.5 times the grid spacing on either side of
the interface will affect the dynamics of small waves. This has been recognised by several groups (Coward
et al., 1997; Kang et al., 2000; Magnaudet et al., 2006). Coward et al. (1997) argued that the shear rate, rather
than the viscosity, should be smoothed for simulations of flows in which shear along the interface dominates
the stress tensor. In terms of a level-set formulation (the previous work cited above is for VOF methods), the
smoothed value of the local viscosity, l(/), is given by
l�1ð/Þ ¼ l�1
A þ Hð/Þl�1

B ; ð9Þ
where / is the local value of the level-set function (the distance to the interface; the sign of which identifies the
fluid), and H(/) is the smoothed Heaviside function. We have adopted this strategy in our simulations, and
found that discretisation errors were reduced substantially, consistent with e.g., Coward et al. (1997). This
strategy also yields a better agreement between our numerical and theoretical linear growth rates at early
stages of wave growth (as would be shown later), similar to the findings of Boeck et al. (2006). It appears from
the results presented e.g., in Figs. 11 and 12 below that also the later stages of wave growth considered here are
dominated by shear.

A further complication is that simulating the approach to slug initiation starting from a wave of very small-
amplitude requires many timesteps. It was found that, in some simulations, small discretisation errors around
the interface can accumulate during the rather long period during which the wave amplitude is less than one
grid spacing. Such disturbances may be attributed to the generation of spurious currents (e.g., Lafaurie et al.,
1994; similar currents have been observed when using the present method, as mentioned by Spelt, 2005). These
are understood to result from the discretisation of the surface-tension momentum-source term. Although the
currents are usually small, the present simulations are over rather long integration times. The simulations are
not extended to times at which the wave crest approaches the top wall of the channel, because the 3D geomet-
rical effects for pipe flows would be very important at that stage.

Finally, the initial wave amplitude is taken to be much smaller than the grid spacing, unless indicated other-
wise. The reason for this is that the theory is for infinitesimally small-amplitude. If the initial wave amplitude is
not very small, the pressure disturbance is very large, rendering the linear analysis invalid. Therefore, we typ-
ically use an initial amplitude of O(10�5). A convergence test for capillary waves is presented in the Appendix.

4. Results for flows with approach to slug initiation

We first investigate the evolution of the linear mode that was found to be the most unstable according to the
linear theory presented in Section 2. Hence we consider the parameter values as in Fig. 2 but set k = 1.5 (see
Fig. 3). The length of the periodic cell L is set equal to the length of these waves. The growth rate and wave
speed obtained from the simulations are compared with the Orr–Sommerfeld analysis in Table 2. The growth
rate was determined from the height of the wave crest, averaging over the time interval wherein it grows
approximately exponentially with time. It was verified that using the evolution of a Fourier transform of
the wave shape gave virtually the same results (e.g., for the 192 · 128 grid in Table 2, the growth rate would



Table 2
Dependence of growth rate and wave speed on grid spacing

N · M xI xR/k

64 · 96 0.066 2.912
128 · 192 0.088 2.908
256 · 384 0.096 2.908
Theoretical 0.096 2.906

Parameters used are h = 0.7, m = 10, n = 10, k = 4p/3, Re = 500, Ca = 10 and G = 180. The interface was perturbed with an initial
amplitude of 2 · 10�5.
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be 0.087 instead of 0.088). The results from the simulations appear to converge to the analytical values. This is
particularly encouraging, because it was seen in Section 3 that the instability is driven by the viscosity contrast,
which has been smoothed in the simulations over a few grid points.

In Fig. 4 it is seen that the linear Orr–Sommerfeld solution remains a useful estimate for several decades of
wave growth, when the initial amplitude is 0.02% of the channel height. It is not clear outright that the sim-
ulation method would be able to capture the wave evolution during stages where the amplitude is much smal-
ler than the grid spacing. But the growth rate of the wave is seen in Fig. 4 not to change significantly when the
wave amplitude becomes of the order of the grid spacing, which would suggest that the method can indeed be
used for such small waves. Eventually, the wave saturates to a somewhat steepened structure, as can be seen in
Fig. 5 (snapshots of the wave shape showed that the evolution only involved the growth and distortion of the
initial wave). It could be anticipated that at larger values of Ca the wave may develop into fingers (e.g., Boeck
et al., 2006), which is significant in the study of atomisation and droplet entrainment, but these relatively
small-amplitude short waves appear at most to represent a very preliminary stage in the transition to slug flow.

In order to put these and subsequent results in context, we briefly investigate this non-linear evolution in
more detail here, however. Fig. 6 shows the growth of the first four Fourier modes of the interface height for
an initial amplitude of 10�3. The evolution of the amplitude A1 of the fundamental mode is compared in the
figure with the solution of the Stuart–Landau equation,
Fig. 4.
the nu
saturat
dA1

dt
¼ xIA1 � bA3

1; ð10Þ
using a fitted value for the Landau constant b. Given that the linear growth rate is somewhat underpredicted
by the full numerical simulations at the grid spacing used (cf. Table 2), we have also used a fitted value in the
Maximum perturbation height as a function of time for the same case as in Fig. 2, with L = 1.5. Solid and dashed lines represent
merical simulation (for the grids indicated) and linear stability analysis, respectively. The numerically obtained amplitudes of the
ed waves are 0.054 and 0.044 for the 192 · 128 and 96 · 64 grids, respectively.
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Fig. 5. Profile of saturated most dangerous mode (L = 1.5) for the same case as in Fig. 2 with a 192 · 128 grid (detail). Flow is from left to
right.
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Fig. 6. Evolution of the Fourier spectrum for the most unstable mode (L = 1.5) with a 192 · 128 grid. Parameter values are the same as in
Fig. 2. The solid curve is the solution of the Stuart–Landau theory with fitted coefficients. The dashed, dash-dotted, dash-dot-dotted and
dotted lines represent the amplitude of the first, second, third and fourth harmonic, respectively, obtained from a Fourier transform. The
solid line segment represents the growth rate of the fundamental mode corresponding to linear theory. The dotted segment represents that
obtained when adding the growth rate of the first overtone.
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comparison in Fig. 6. Evidently, the evolution of A1 is well described by Eq. (10), and the Landau constant is
positive – suggesting the existence of a supercritical bifurcation. But it would be necessary to conduct a com-
plete parametric study in order to prove this (beyond the scope of this work), as even subcritical bifurcations
can lead to amplitude saturation (King and McCready, 2000). Furthermore, although Eq. (10) is a convenient
way to represent the results, there are concerns regarding its applicability (King and McCready, 2000). In par-
ticular, the case considered in Fig. 6 is for the linearly most unstable mode, which is rather far removed from
the instability threshold (see Fig. 3a; the first overtone is linearly unstable).

The results in Fig. 6 also include the time evolution of the amplitude of three overtones. Although we have
to be very cautious when drawing conclusions from these results, given the relatively small-amplitudes and the
rather coarse discretisation, it is of interest to at least attempt to make sense of these data. In particular, it is a
concern that the overtones in Fig. 6 grow faster than the fundamental mode, whereas the latter is linearly the
most unstable. This could be due to non-linear effects (e.g., Barthelet et al., 1995; King and McCready, 2000),
in particular, the results could show the significance of mode interactions. On the other hand, the present case
is not sufficiently close to criticality for the arguments of weakly non-linear theory to be rigorously valid.
There is an alternative explanation for the rapid growth of overtone amplitudes, which follows from the expec-
tation that overtone amplitudes initially grow rapidly from zero (the initial condition) due to discretisation
errors (i.e., the theoretical sinusoidal wave is slightly distorted). If, after an initial transient, the resulting shape
of the wave remains approximately constant during an intermediate period in the simulations, the overtone
amplitudes would be expected to grow at the same rate as the fundamental mode. A complication is that
the first overtone is unstable according to linear theory. The first overtone could thus grow even faster than
the fundamental mode. We have included in Fig. 6 line segments that represent the growth rate corresponding
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to the sum of the growth rates of the fundamental mode and the first overtone from linear theory, and that of
the fundamental mode itself. It is seen that the growth rate of the first overtone in the simulations is in between
these two values. We note also that the growth rates of the amplitudes of the second and third overtone in the
simulations are not far removed from these values, despite the fact that these are linearly stable. It could be
argued that this is because they are associated with discretisation errors of the fundamental mode and the first
overtone. (We have verified in additional simulations that shorter fundamental modes grow at a rate that com-
pares with linear theory in a similar manner to the results given in Table 2 for L = 1.5.) We present and discuss
further data on overtones for other cases later on in this section (Fig. 8) to further test the suggestions made
above. If the initial growth is attributable to numerical error, the accuracy of growth rates of overtones at later
times would naturally be a concern. However, the results presented here were found to be robust. For exam-
ple, the time dependence of the amplitudes of the overtones was found to be almost identical when starting
with the much smaller initial wave amplitude of 2 · 10�5 (e.g., at any value of the fundamental mode ampli-
tude, the absolute amplitudes of the overtones are virtually the same in both cases). Also, we have seen in
Fig. 4 that different values of the grid spacing only have a quantitative effect on the main result (the saturation
of the linearly most unstable mode).

An approach to slug flow is observed for relatively long waves. We first investigate the evolution of a rel-
atively long wave for the case corresponding to Fig. 2 (with L = 8). This wave is linearly unstable but has a
relatively low linear growth rate (Fig. 3). The finest mesh that could be used without making the computa-
tional cost excessive was a 512 · 64 grid. It was found that the linear growth rate is underpredicted when using
this grid, by about 14%. Hence the performance of the method happens to be better here than for the short
waves at the same grid spacing (cf. Table 2). The height of the wave crest as a function of time is shown in
Fig. 7. It is seen that the wave grows to at least double the amplitude attained by the linearly most unstable
wave. The maximum wave amplitude is 0.1, and the wave is still growing (at least, in the case of the finest
mesh, 512 · 64 grid, used here). We therefore investigate this wave growth in more detail here.

For relatively short times (t < 60), the growth rate is seen to be acceptably close to the value from linear
theory (which is only slightly underpredicted, consistent with the findings in Table 2 for short waves). But,
in contrast to the evolution of the short wave, there are sudden changes in the slope of the curves shown (this
is seen for both values of the grid spacing used). Also, the growth rate increases significantly. The time evo-
lution of the first four harmonics is shown in Fig. 8, together with the corresponding result for a simulation
with a much larger initial amplitude. In Fig. 8b, the linear growth rate of the first overtone is larger than that
of the fundamental mode. The amplitude of the first overtone is seen to eventually grow beyond that of the
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Fig. 7. Maximum perturbation height as a function of time from numerical simulations for the same case as in Fig. 2 with L = 8 for three
different initial amplitudes 2 · 10�5, 1 · 10�4 and 1 · 10�3. Dashed and solid lines represent grids of 256 · 32 and 512 · 64, respectively.
The short-dashed line represents linear stability theory.
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fundamental mode, which would invalidate an assumption made in Stuart–Landau theory. The growth of the
fundamental mode appears to be increased as a result. Subsequently, the first overtone seems to approach sat-
uration, whereas the fundamental mode continues to grow, such that the fundamental mode then overtakes
the first overtone again. Eventually, all overtones are suppressed whereas the fundamental mode continues
to increase in amplitude. A qualitatively similar result is observed in Fig. 8a for an initially larger amplitude.

It may also be seen in Fig. 8a that the overtone amplitudes grow at rates in between the corresponding val-
ues obtained from linear theory for the overtone themselves (or somewhat less as may be expected from
Fig. 4), and the values obtained when adding the growth rate of the fundamental mode, as suggested in the
discussion of Fig. 6 above. It is encouraging to see that the results are much closer to the growth rates of
the overtones themselves than in Fig. 6 (note that the solid line segments in that figure represent the growth
rate of the fundamental mode from linear theory, not that of the overtones). This would be expected because
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Fig. 8. Evolution of the Fourier spectrum for L = 8 using a 512 · 64 grid and an initial amplitude of 10�3 (a) and 2 Æ 10�5 (b). The solid
line is the amplitude based on the height of the wave crest. The dashed, dash-dotted and dash-dot-dotted lines with solid squares represent
the amplitude of the first, second and third harmonic, respectively, obtained from a Fourier transform (the dotted line with open squares in
(b) is the fourth harmonic). The parameter values are the same as in Fig. 7. The result for the fourth harmonic shows significant scatter
(not shown) but does appear to be enslaved to the second harmonic. The solid line segments represent the growth rate corresponding to
linear theory. The dotted segments represent that obtained when adding the growth rate of the fundamental mode.
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the overtones are more unstable than the fundamental mode in the present case. We also note from comparing
Fig. 8a and b that when the overtones are smaller compared to the fundamental mode, their growth rate is
overpredicted to a larger degree. It is encouraging to see that, despite such differences between Fig. 8a and
b regarding this comparison with the linear growth rates, the subsequent dynamics are qualitatively very sim-
ilar. At late times, we see that the fundamental mode dominates at first, then the first overtone, and finally the
fundamental mode again, and that the contributions of higher overtones become significant in the final stages
of the simulation. We have verified that the results on a coarser (256 · 32) grid also lead to wave coalescence.

We show details of the change in wave shape in Figs. 9a–d and 10a–d. At time t = 75, the wave has been
distorted somewhat, apparently due to amplification of shorter wavelength noise (Fig. 9a) as discussed above.
These distortions evolve into disturbances of the initial profile, of wave length around 2. It is encouraging to
see that this corresponds roughly to the most-dangerous mode (Fig. 3), corresponding to the rapid growth of
the overtones observed in Fig. 8b. Thereafter, these short waves grow faster than the long wave that was
imposed as the initial condition (Fig. 9b–d). The crests of the short waves are not identical, and, at later times,
the short wave with the largest amplitude overtakes and merges with the other waves, thereby resulting in a
single large wave structure, of wave length equal to the size of the domain (Fig. 10d). Hence the changes of
slope seen in Fig. 7 occur when the highest point shifts between the competing peaks of shorter wavelength.
The coalescence process was also observed when starting with a much larger initial amplitude, 10�3 instead of
2 · 10�5.

A detailed comparison with experimental observations of slug initiation is of course difficult. Nevertheless,
it is of interest to note the observations of Andritsos et al. (1989) that the first disturbances to appear on the
interface are very small sinusoidal waves. They found that these suddenly give rise to a large-amplitude wave
which leads to slug formation. Sometimes a few large-amplitude waves coalesce with one another before a slug
is formed. Fan et al. (1993) showed that the initial small-amplitude, short-wavelength waves lead to a large-
amplitude wave of longer wave length (roughly double the initial length) further downstream. The present
work shows that such phenomena also can occur under laminar conditions.

The computational results also further elucidate the later stages of the wave development. In Fig. 10,
instantaneous streamlines are shown. The streamlines were obtained by subtracting a wave speed from the
instantaneous velocity field, then using a central-difference approximation for the vorticity, and solving the
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Fig. 9. Early stages of wave growth: spatial wave profiles for the same case as in Fig. 6; L = 8 and the grid is 512 · 64.



Fig. 10. Later stages of wave growth. Contour plots of the stream function in a frame of reference moving with the highest point of the
wave. The thick line represents the interface. The parameters remain the same as in Fig. 7, at times t = 150 (a), 180 (b), 221.25 (c) and 262.5
(d).
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Poisson-type equation for the stream function iteratively, also using a finite-difference method. The ‘‘wave
speed’’ used here is the time derivative of the location of the highest point of the wave.

At intermediate times (Fig. 10a), the instantaneous streamlines are similar to the short wave Orr–Sommer-
feld solution. Two layers of vortical structures are observed in the upper fluid, these are located above the
wave troughs. At intermediate times (Fig. 10b), the counter-rotating vortices located above each trough grow,
and together interact with the wave front in a complex manner, eventually leading to merging of short waves
by ‘‘filling-in’’ the trough between two waves. A similar mechanism appears to lead to further merging at later
times (Fig. 10c and d). Shortly after the time corresponding to Fig. 10d it appeared that spurious currents
started to affect the interface shape. We return to late stages in the wave evolution further below.
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In the results discussed above, discretisation errors lead to the formation of short waves. Key features of the
subsequent growth appear to be the difference in amplitude of co-existing short waves, and the non-periodic
distribution of these waves. Simulations starting with several short waves of equal amplitude, superimposed
on a long wave, gave no indication of an approach to slug initiation.

Slug initiation can also be approached in other ways, such that the role of discretisation errors is further
reduced. In Fig. 11, we show results from a simulation in which a wave of relatively large-amplitude
(0.0125 times the channel height) was introduced (the wavelength was again 8; the other parameters are as
in Fig. 2). Here, however, the corresponding velocity and pressure disturbances that would follow from linear
theory for such a wave are not included (these perturbations would be too large, as explained at the end of the
previous section). It is seen that, in this case, short waves do not have sufficient time to grow and merge;
instead, slug initiation is approached by continuous deformation and growth of a long wave. Despite this dif-
ference with the results in Figs. 9 and 10, the instantaneous stream function in Fig. 11c is similar to that shown
in Fig. 10d. Fig. 11d shows the reduced pressure, which is obtained by subtracting the hydrostatic contribution
to the pressure and the linear axial pressure gradient.

At a late stage in the wave development, the tail of the wave is seen to steepen markedly (Figs. 10d and
11b). Fig. 12 shows the interpolated values of the normal and shear components of the viscous stress tensor
and the pressure corresponding to Fig. 11c, and 13a shows the velocity profiles at the trough and crest of the
wave. In Fig. 12a a retarding shear stress (which is directed to the left) is seen to be exerted by the upper fluid
Fig. 11. Approach to slug initiation from continuous deformation of a single wave. Results are for the same case as in Fig. 7, but here a
disturbance in the interface height of relatively large-amplitude (0.0125 of the channel height) is initially imposed, with no disturbance in
the velocity or pressure. The grid size is 512 · 64. The interface shapes shown in (a) and (b) correspond to the times indicated. The
instantaneous streamlines shown in (c) for t = 54 are in a frame of reference moving with the crest of the wave. The spacing in values of
the stream function is 0.02. The corresponding contour plot of the reduced pressure is shown in (d), where the thick line represents the
interface.
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at the top of the wave, while the shear stress in the trough on the left-hand side of the figure is much larger
(and is directed towards the right). Such an out-of-phase stress distribution is expected to lead to wave growth
[see e.g., Hanratty, 1983 for similar arguments for linear instability mechanisms]. A complicating factor here is
that the stress distribution is asymmetric with respect to the wave crest; the stress magnitude is higher in the
troughs than at the crest. Overall, one would expect this to lead to distortion of the wave shape, in particular,
to the steepening of the tail of the wave. We also note that, in Fig. 11d, the reduced pressure is seen to be in
phase with the interface height (see also Fig. 11a), and will act to stabilise the wave. It is clear from Fig. 11d
that the hydrostatic contribution still dominates the pressure disturbance in the lower fluid. For the benefit of
one-dimensional model development, we have plotted the shear stress distribution at the walls for the same
wave, in Fig. 12b. It is of interest that the shear stress does not vary very much along the walls.
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Fig. 12. Profiles of interfacial (a) and wall (b) stress components for the flow shown in Fig. 11c and d. In (a), the solid line shows the shear
stress and the dashed line shows the normal stress. In (b), the solid and dashed lines show the magnitude of the shear stress at the bottom
and top walls, respectively. (c) Reduced pressure. Note from Fig. 11c that the wave is turning over already at this time, explaining the rapid
changes near x = 7.4. The data shown in (a) were obtained from the simulations by taking averaged values at cell vertices of the level-set
function. Only grid cells were taken into account where this averaged value is less than 0.05 times the grid spacing and the vertex is located
in the upper fluid.



u

y

2.2 2.4 2.6 2.8 3 3.20.3

0.4

0.5

0.6

0.7

0.8

0.9

<u>

y

2.2 2.4 2.6 2.8 3 3.20.3

0.4

0.5

0.6

0.7

0.8

0.9

φ

y

0 0.2 0.4 0.6 0.8 10.4

0.5

0.6

0.7

0.8

0.9c

Fig. 13. Velocity profiles for the flow in Fig. 9c. (a) Velocity profile at the trough (solid line; x = 0) and crest (dash-dotted line; x = 6). (b)
Velocity profile averaged over the wave length. Dashed line, fluid B; dash-dotted line, fluid A; solid line, initial (flat interface) velocity
profile. (c) Profile of the averaged volume fraction of the upper fluid.

222 P. Valluri et al. / International Journal of Multiphase Flow 34 (2008) 206–225
Finally, for possible modelling purposes of slug flows, line-averaged velocity profiles are shown in Fig. 13b,
together with the initial velocity profile for a flat interface; the corresponding volume fraction of the upper
fluid is shown in Fig. 13c. It is seen that the wave causes an increase in the maximum velocity. Also, the aver-
aged profiles exhibit interphase slip at most points, even at the trough and crest of the wave. We also see from
this figure that the wave speed (equal to 3.0) is larger than the averaged velocity in the lower fluid.

Although no full parametric study was performed, some additional simulations were performed to
investigate whether the observations made here are more generally valid. Simulations for a value of Re

five times larger (=2500), and an initial wave amplitude of 10�4 (all other parameters as before) showed
virtually the same coalescence process observed in Fig. 10. The value of Ca was subsequently increased
five-fold to 50; again, results qualitatively similar to those in Fig. 10 were observed (hence neither case
is shown here). In simulations with a lower base-state interface height of h = 0.68, no approach to slug
initiation was observed, although the growth rate for disturbances is significantly higher (see Fig. 3b).
In such cases, depending on flow parameters, either a saturated travelling wave results, or atomisation
events are approached.
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5. Conclusions

We have presented results for the onset of the initiation of slug-type structures in 2D, two-phase stratified
laminar pressure-driven channel flow. Numerical results were obtained using a level-set method for the sim-
ulation of 2D two-phase flows. Good agreement was obtained with (amongst other tests) an Orr–Sommer-
feld-type stability analysis for the growth rate and wave speed of very small disturbances of the flow (to
which the analysis is limited).

The numerical results show the non-linear evolution of the interface shape, once small disturbances
have grown substantially. A tendency towards slug formation was observed when the initial interface level
was sufficiently high. The linear theory and the subsequent energy analysis in Section 2 show that the
most unstable mode is an interfacial mode of relatively short-wavelength, for the cases simulated here.
The short waves saturate when the length of the periodic domain is set equal to the wave length, and
longer waves are absent initially. The evolution of the amplitude of the fundamental mode could be well
described by a Stuart–Landau equation in this case, with a positive Landau constant. We also found that
at early times in this case, overtones can be enslaved by the fundamental mode due to numerical error if
their linear growth rate is not sufficiently large, although the late-time dynamics seems to be affected only
quantitatively.

In Section 3, short waves are observed to coalesce into large-amplitude longer waves when the length of
the periodic domain is large. Evidently there is a need for a reduced theory that would represent such
phenomena. The time evolution of the fundamental mode and overtones is more complex and it is argued
that it would not be possible to model this using Stuart–Landau theory. Furthermore, it is shown that the
growth and distortion of the large wave are associated with the shear stress being directed towards the
trailing part of the wave crest. It is clear that the distribution of shear stress along the interface is very
important for wave growth, so that simplified shear stress models that are commonly used in one-dimen-
sional approaches are likely to lead to erroneous results. Further analysis would be needed to improve
such simplified approaches to take into account the shear stress distribution in models of reduced
dimensionality.

Results were also presented that are of potential use in further modelling efforts, including phase-aver-
aged velocity profiles, and a volume fraction distribution. These could be used in future work on large-
scale modelling of stratified flows, e.g., in approaches wherein the average flow is treated as consisting
of two layers separated by a two-phase layer representing the wavy interface.

Although the results presented here show the important transition from the linear regime for infinites-
imal waves to the onset of slug initiation, the numerical method used has posed some important restric-
tions on this study that must be removed in future work. The main restrictions are that the flows
simulated are laminar, with relatively modest density and viscosity ratios. Despite the experimental obser-
vations summarised in Section 1, it remains unclear exactly how the corresponding transition to slug flow
occurs in turbulent flow. Even linear theories published so far on this problem make the important
assumption that the only significant role of turbulence is to change the averaged velocity profile. A further
important restriction of the present work is that the flows simulated are two-dimensional. It is anticipated
that 3D geometrical effects will be especially important during bridging events, i.e., the final stage of slug
initiation. Finally, due to the excessive computational effort required, a full parametric study could not be
conducted here; instead, a detailed investigation was conducted for a few representative values of the flow
parameters.
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Hydro, Petrobras, Scandpower; Shell, SINTEF, Statoil and TOTAL.



Table A1
Convergence test for a slowly decaying travelling wave

N2 EN log2(EN/EN/2)

322 17.8
642 7.05 1.34

1282 3.14 1.17
2562 1.42 1.14

Parameter values used are n = 1, m = 1, c = 1, ReW = 100, k = 2p, h = 0.5 and (dx/a) = 0.3125. Here EN is the percentage deviation from
the analytical solution.
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Appendix A

It is instructive to check the numerical method against a well-established, explicit analytical solution for
slowly decaying travelling waves, such that x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� e�2kH Þ=ðkqÞ

p
� 2mk2i (Lamb, 1932). In this test, the flu-

ids are density and viscosity-matched. The other parameter values used are c = 1, L = H = 1 and h = 0.5. The
wave amplitude is not vanishingly small compared with the grid spacing, so that keeping the wave amplitude
constant whilst refining the mesh will result in convergence to a value that is not exactly the same as the the-
oretical prediction. Therefore, the amplitude of the initial wave was varied proportionally with the grid spac-
ing (in this particular case, the ratio was 0.3125). In this way, refining the mesh will also amount to
approaching the analytical limit more closely. Changing the amplitude, however, results in changing the Rey-
nolds number associated with the wave motion, ReW = e2kc/m, which would result in an inconsistent compar-
ison between results from different meshes. The viscosity is therefore chosen in this test such that ReW is fixed
at a value of 100. Results for the period of the wave for different values of the grid spacing, thus obtained, are
shown in Table A1. Approximately first order convergence is obtained, consistent with other convergence tests
(Spelt, 2005).
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